Download Ebook Machine Learning Projects for .NET Developers, by Mathias Brandewinder
Book lovers, when you require a brand-new book to review, locate the book Machine Learning Projects For .NET Developers, By Mathias Brandewinder right here. Never ever fret not to discover just what you need. Is the Machine Learning Projects For .NET Developers, By Mathias Brandewinder your required book now? That's true; you are truly an excellent visitor. This is an excellent book Machine Learning Projects For .NET Developers, By Mathias Brandewinder that originates from excellent writer to share with you. Guide Machine Learning Projects For .NET Developers, By Mathias Brandewinder supplies the best experience and lesson to take, not only take, however likewise learn.
Machine Learning Projects for .NET Developers, by Mathias Brandewinder
Download Ebook Machine Learning Projects for .NET Developers, by Mathias Brandewinder
Machine Learning Projects For .NET Developers, By Mathias Brandewinder. Change your habit to hang or squander the moment to only talk with your friends. It is done by your everyday, don't you feel bored? Now, we will reveal you the extra habit that, in fact it's a very old behavior to do that could make your life much more certified. When really feeling bored of always chatting with your good friends all leisure time, you can find the book entitle Machine Learning Projects For .NET Developers, By Mathias Brandewinder and then review it.
Maintain your method to be right here as well as read this resource completed. You could delight in searching the book Machine Learning Projects For .NET Developers, By Mathias Brandewinder that you actually describe get. Right here, getting the soft file of guide Machine Learning Projects For .NET Developers, By Mathias Brandewinder can be done effortlessly by downloading in the web link resource that we give below. Of course, the Machine Learning Projects For .NET Developers, By Mathias Brandewinder will be all yours faster. It's no need to await the book Machine Learning Projects For .NET Developers, By Mathias Brandewinder to receive some days later on after buying. It's no should go outside under the heats up at mid day to go to guide establishment.
This is several of the benefits to take when being the participant as well as get the book Machine Learning Projects For .NET Developers, By Mathias Brandewinder right here. Still ask just what's different of the various other site? We give the hundreds titles that are developed by recommended writers and also publishers, around the world. The link to buy and download and install Machine Learning Projects For .NET Developers, By Mathias Brandewinder is also very easy. You could not find the challenging website that order to do even more. So, the method for you to get this Machine Learning Projects For .NET Developers, By Mathias Brandewinder will be so easy, won't you?
Based on the Machine Learning Projects For .NET Developers, By Mathias Brandewinder details that we offer, you could not be so confused to be here as well as to be member. Obtain now the soft documents of this book Machine Learning Projects For .NET Developers, By Mathias Brandewinder as well as wait to be your own. You conserving can lead you to evoke the convenience of you in reading this book Machine Learning Projects For .NET Developers, By Mathias Brandewinder Also this is kinds of soft data. You can actually make better opportunity to obtain this Machine Learning Projects For .NET Developers, By Mathias Brandewinder as the recommended book to check out.
Machine Learning Projects for .NET Developers shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-world problems. You’ll code each project in the familiar setting of Visual Studio, while the machine learning logic uses F#, a language ideally suited to machine learning applications in .NET. If you’re new to F#, this book will give you everything you need to get started. If you’re already familiar with F#, this is your chance to put the language into action in an exciting new context.
In a series of fascinating projects, you’ll learn how to:
- Build an optical character recognition (OCR) system from scratch
- Code a spam filter that learns by example
- Use F#’s powerful type providers to interface with external resources (in this case, data analysis tools from the R programming language)
- Transform your data into informative features, and use them to make accurate predictions
- Find patterns in data when you don’t know what you’re looking for
- Predict numerical values using regression models
- Implement an intelligent game that learns how to play from experience
Along the way, you’ll learn fundamental ideas that can be applied in all kinds of real-world contexts and industries, from advertising to finance, medicine, and scientific research. While some machine learning algorithms use fairly advanced mathematics, this book focuses on simple but effective approaches. If you enjoy hacking code and data, this book is for you.
- Sales Rank: #601438 in Books
- Published on: 2015-06-29
- Released on: 2015-07-01
- Original language: English
- Number of items: 1
- Dimensions: 10.00" h x .68" w x 7.00" l, .0 pounds
- Binding: Paperback
- 300 pages
About the Author
Mathias Brandewinder is a Microsoft MVP for F# based in San Francisco, California. An unashamed math geek, he became interested early on in building models to help others make better decisions using data. He collected graduate degrees in Business, Economics and Operations Research, and fell in love with programming shortly after arriving in the Silicon Valley. He has been developing software professionally since the early days of .NET, developing business applications for a variety of industries, with a focus on predictive models and risk analysis.
Most helpful customer reviews
20 of 20 people found the following review helpful.
Potentially an amazing book, but with some serious flaws that need fixing
By Yossu
Despite the three stars, I have to start off by saying that this book got me very excited, and has the makings of a five star book. However, I think it has a couple of major issues that would need fixing before I could really recommend it. Depending on your background, these issues may not be a problem for you, in which case you would love it. Please read my review carefully before commenting or rating it, as my reasons for feeling it wasn't as good as it could be may not apply to you. That doesn't make my review unhelpful, it just means that it may not apply to you.
Let me begin by pointing out that my day job consists of pulling data from a database, displaying it on a window, waiting for the user to do something with it and then saving it back to the database. Probably sounds boringly familiar to a lot of us. If so, you need to read this book to realise that some people have fun in their jobs! I read this book thinking, "Why aren't I doing exciting stuff like this?"
So why only three stars, let me explain. The blurb for the book includes the following (incorrect) statement... "If you’re new to F#, this book will give you everything you need to get started." This was one of the reasons I bought it. I have looked at F# before, but never really got to grips with it. This promised to teach it to me, whilst explaining Machine Learning (ML) at the same time. Sadly, the author failed fairly badly at this, which is a shame, as it wouldn't have taken much to include a bit more explanation that would have made the F# code much easier to understand.
As I read the first chapter, I was really excited. It was well explained, and opened my eyes to a whole new world of code that I had never seen. He started off with some code in C#, which was great as it was familiar, then showed the same code in F#, and explained how it worked. At this point, I was ready to give the book a five star review, and rave about how wonderful it was.
As I read the second chapter, I began to have my doubts, as he threw new F# syntax and constructs in, but didn't explain what most of it was, leaving me confused as to what the code was supposed to be doing. This got worse as the book went on, to the point where I started skim-reading the F#, totally defeating the purpose of the book. Sure I could copy and paste his code, but that wouldn't help me understand ML. I want to know what he's doing and why, so I can then write my own code to suit my own situation. Without sufficient explanation of the F#, this was extremely difficult.
He also didn't really explain why F# was any better for this than C#. Other than the type providers, which is a brilliant F# feature, I wouldn't see any reason why I wouldn't do exactly the same in C#. I'm sure F# has many reasons for being more suitable, but this book didn't explain them.
The annoying thing is that the book is pretty slim (less than 300 pages), and it wouldn't have been a problem to add more explanation of the F#. The book could still have been a modest size, but would have been sooooooo much better. Given the high cost of the book for the number of pages, it's actually a bit cheeky that the explanations are so slim.
Now obviously, if you already have a good background in F#, then the comments above won't apply to you, but the book is sold on the promise of teaching you F# as it goes along, and (in my opinion) it fails to do that.
The other major issue with the book is the maths. I was please to discover that ML uses some quite interesting maths, but very frustrated that he didn't explain most of this. Sure you can go off and search around for explanations of the concepts and what they mean, but I don't need to buy a book for that.
Now before anyone jumps in and points out that this isn't a maths book, and it would take too much to explain it all, you're right, but SOME explanation would have made a huge difference. For example, it's pretty easy to look up the definition of eigenvectors and eigenvalues, and find out how to compute them, but I want to know WHY they are useful here, and what they mean. Again, using this sort of thing blindly, without any understanding of what it means is not going to make me an expert in ML. I want to be able to do this stuff on my own, not just copy his code and use it without understanding it.
Again, this issue may not be a problem for you if you are well versed in Bayesian statistics, liner algebra, entropy and various other non-trivial subjects, but as the majority of us are probably not knowledgeable in these areas, we need more explanation to make this book as amazing as it obviously could be.
I feel bad giving the book only three stars, especially as I can't put it down, but I feel it really needs major work before it can be recommended whole heartedly. I hope the author takes these comments in the spirit they were intended, and fleshes out the book for the second edition. If so, this would be a truly brilliant book.
In summary, this book could be a classic. As it is, it's compelling reading, but left me without any confidence that I would apply much of what was presented on my own.
7 of 7 people found the following review helpful.
Great Educational Tool for All Skill Levels
By David
I want to start with this is a fantastic book and should be in every developer's library.
I have made it through most of this book so far and even as a professional developer focused on big data, machine learning and cloud technologies have learned a fair amount from it. I think one of the most important aspects of this book is the progression from simple to sophisticated with a focus on the simplest solution that solves the problem. I sit on the board of a community college and am an adjunct professor as well as industry guest speaker at several Universities. I recommend this book primarily for an intermediate audience, however I will be using it in my introduction to programming classes as well, as I believe with some guidance, this book will spark far more programming discussion and thought than the simpler topics.
The book is complete with functioning code and downloadable data sets; a perfect educational tool.
I know the biggest issue with Amazon reviews is knowing if the reviewer knows what they are talking about, so I will post a link to the website I run and from there you can draw your own conclusions. http://www.indiedevspot.com/
3 of 3 people found the following review helpful.
Great Book
By James Dixon
This is a great book for .NET developers who are interested in a gentile introduction to machine learning. The text is clear, the examples are interesting, and the code is flat out fun to write.
Machine Learning Projects for .NET Developers, by Mathias Brandewinder PDF
Machine Learning Projects for .NET Developers, by Mathias Brandewinder EPub
Machine Learning Projects for .NET Developers, by Mathias Brandewinder Doc
Machine Learning Projects for .NET Developers, by Mathias Brandewinder iBooks
Machine Learning Projects for .NET Developers, by Mathias Brandewinder rtf
Machine Learning Projects for .NET Developers, by Mathias Brandewinder Mobipocket
Machine Learning Projects for .NET Developers, by Mathias Brandewinder Kindle
Tidak ada komentar:
Posting Komentar